A Novel Sensorless Fuzzy Sliding-Mode Control of Induction Motor

نویسندگان

  • Yue Yuntao
  • Lin Yan
چکیده

A novel fuzzy sliding-mode structure has been proposed for the model reference adaptive system(MRAS) based sensorless control of an induction motor in this paper. The design includes a hybrid MRAS from measured stator terminal voltages and currents. The estimated speed is used as feedback in an indirect vector control system achieving the speed control without using shaft mounted transducers. Fuzzy sliding-mode structure includes two nonlinear controllers, one of which is sliding mode type and the other is PIfuzzy logic based controller, the latter define a new control structure. Both controllers are combined by means of an expert system based on Takagi-Sugeno fuzzy reasoning. The sliding mode controller acts in the steady state. The new structure has two advantages: sliding-mode controller increasing system stability and PI-like fuzzy logic based controller reducing the chattering in permanent state. The scheme has been implemented and experimentally validated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensorless Indirect Field Oriented Control of Single-sided Linear Induction Motor With a Novel Sliding Mode MRAS Speed Estimator

This paper proposes a new sliding mode control (SMC)  based model reference adaptive system (MRAS) for sensorless indirect field oriented control (IFOC) of a single-sided linear induction motor (SLIM). The operation of MRAS speed estimators dramatically depends on adaptation mechanism. Fixed-gain PI controller is conventionally used for this purpose which may fail to estimate the speed correctl...

متن کامل

A Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer

This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...

متن کامل

Robust Optimal Speed Tracking Control of a Current Sensorless Synchronous Reluctance Motor Drive using a New Sliding Mode Controller

This paper describes the robust optimal incremental motion control of a current  sensorless synchronous reluctance motor (SynRM), which can be specified by any desired speed profile. The control scheme is a combination of conventional linear quadratic (LQ) feedback control method and sliding mode control (SMC). A novel sliding switching surface is employed first, that makes the states of the Sy...

متن کامل

Performance analysis of the sensorless adaptive sliding-mode neuro-fuzzy control of the induction motor drive with MRAS-type speed estimator

This paper discusses a model reference adaptive sliding-mode control of the sensorless vector controlled induction motor drive in a wide speed range. The adaptive speed controller uses on-line trained fuzzy neural network, which enables very fast tracking of the changing speed reference signal. This adaptive sliding-mode neuro-fuzzy controller (ASNFC) is used as a speed controller in the direct...

متن کامل

Designing fuzzy-sliding mode controller with adaptive sliding surface for vector control of induction motors considering structured and non-structured uncertainties

Induction motors with nonlinear dynamics are superior in terms of size, weight, motor inertia, maximum speed, efficiency, and cost than direct current machines, and hence their control is of great important. The main objective of this paper is to design a fuzzy sliding mode controller in order to control the position of the induction motor including parametric and non-parametric uncertainties b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015